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Abstract

It is shown that a Walker 4-manifold, endowed with a canonical neutral metric depending on
three arbitrary functions, admits a specific almost complex structure (gatipdr) and an associated
opposite almost complex structure. We study when these two almost complex structures are integrable
and when the correspondingaller forms are symplectic. The conditions for the canonical neutral
metric to be Khler imply that the three arbitrary functions in the metric are all harmonic with
respect to two coordinate variables, and we obtain a useful method of constructing indedinize K
4-manifolds. Petean’s example of a nonflat indefinithler—Einstein 4-manifold is a special case of
this construction.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

By a Walkern-manifold, we mean a pseudo-Riemanniamanifold which admits a
field of parallel nullr-planes, with- < 7. Itis known that an orientable Walker 4-manifold
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(M, g, D) (g: Walker metric,D: a field of parallel null 2-planes) admits an almost complex
structureJ and an opposite almost complex structutécf. [4-7]). In the previous paper
[7], a family of Walker 4-manifolds specified by a certain restriction on the mgfiic= 0)
was studied, and Petean’s nonflat indefinitthker—Einstein metric on a torus was obtained
as an example of a Walker 4-manifdi].

The purpose of the present note is to study certain almost complex strugiieadked
proper) on generic Walker 4-manifolds, and their associated opposite almost complex struc-
turesJ’. We are interested in the integrability 6/, and in the closure of the corresponding
Kahler formse2, £2/, i.e., whether they are symplectic or not. There are, then, 16 possibil-
ities according to whethet and J’ are integrable or not and to wheth&rand 2’ are
symplectic or not. In the restricted situation [@], the proper almost complex structure
studied in the present paper coincides with the almost complex structures defifred in
(15)]

Our main resultTheorem 4 asserts that the conditions for a Walker 4-manifold to admit
an indefinite Kahler structure imply that functiorss b andc which determine the metrig
are all harmonic with respect to two coordinate variables. On the basis of this fact, we can
easily construct numerous examples of indefinighler 4-manifolds, including Petean’s
example[9] (see remark at the end of Sectign

We also obtain Haze’s example of a noncompact indefinite almabkta&—Einstein 4-
manifold which is not indefinite Ehler. This is an indefinite version of the example given
by Nurowski and Przanowsk3].

Thus Walker 4-manifoldsM, g, D) display a large variety of indefinite geometry in
four-dimension (cf[1]).

2. A proper almost complex structureJ and Kahler form £
2.1. Walker metric g

A Walker 4-manifold is a triple ¥, g, D) consisting of a 4-manifoldi, together with
an indefinite metrig and a nonsingular field of two-dimensional plaimeor distribution)
such thaD is parallel and null with respect @p From Walker’s theorerfilO, Theorem 1
and Case 1lthere is a system of coordinates (x2, x3, x*) with respect to whicly takes
the canonical form

0010
0001
10ac
Olch

g =[gij]l = , 1)

wherea, bandc are functions of the coordinates( x2, x3, x*). We see thayis of signature
(+ + ——) (or neutral). The parallel null 2-plarizis spanned locally byd1, 9}, whereo;
are the abbreviated forms gk, (i = 1, ..., 4).
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2.2. Proper almost complex structure J

We call ag-orthogonal almost complex structui®n a Walker 4-manifold/ properif
J defines a standard generator of a posi§veotation onD, i.e., explicitly

Jo1 = 02, Jop = —01. (2)

The following is a fundamental fact for the present issue.

Fact 1. The canonical forn{l) of g defines a unique proper almost complex structure J
on a Walker 4-manifold M, namely the J defined by the following action on the coordinate
basis

Jou=0p,  Jop=—01,  Joz=—cdr+ 3(a—b)d2+ s,
Jog = 3(a — b)dy + cdp — 3. (3

Proof. A proper almost complex structudas characterized by the following three prop-
erties: (i)J% = —1, (ii) g(JX, JY) = g(X, Y), and (iii) is standard ob as in(2).
It is straightforward to see that these three properties défimquely as in(3). O

If we write asJo; = Zj?:l J7a;, then from(3) we can read off the nonzero components
J{ as follows:
B=-ly=J3=-J3=1  J=-Ji=c,  Ji=Ji=13a—-b). (4
Remark. The proper almost complex structuteefined in(3) coincides with that defined

in [7 (15)] in each of the cases (a)}= 0 anda = b, and case (b} = 0 anda = —b. Note
that in the former case (a},is integrable (cf[7, Proposition 4.

2.3. Kahler forms2
In terms of the metrig and the proper almost complex structutenve can define a
Kahler form$2(X, Y) = g(JX, Y), whose explicit form is given by
2 = dx* Adx® — dx® A dx® + L(a+ b)dx® A dit, (5)

Note thats2 is independent of the function We are interested in whef2 is symplectic,
i.e., 2 is closed. (In what follows, we shall use the abbreviatiptx®, x2, x3, x*)/0x’ =
ap/ox' = p;, for any functionpandi =1, ...,4.)

Theorem 2. £ is symplectic if and only if the sum+ b is independent of! andx2. In
fact, a and b satisfy the following PDEs
a1+ b1 =0, az + by =0. (6)

Proof. These conditions follow directly fromi2 = 1d(a + b) Adx3 Adx*=0. O
Let g be a function of {1, x2, x3, x*), and¢ andy functions of 3, x4), and put
a=a(xt, x2, 13, x% = g(xt, 22, 13, XY + (3, 1),

b=b(xt x2, 13, x = —q(t, ¥2, 13, XY + v (3, 1.
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Then,a andb satisfy the PDEs iii6), and therefore the &hler form becomes
Q2 =dx* Adx* —dx® Adx® + %(q)(x?’, x) + (B, xH)dx® A dx?, (7)
which is clearly closed.
2.4. J-integrability

The proper almost complex structulén (3) is integrable if and only if the torsion of
(Nijenhuis tensor), with components

9J aJi oJh aJh
i h k h J i k i J
Nk—zz(faxh Wk~ Jiger + ik ®

vanishes (cf3, p. 124), Whereji’ are given by4). From explicit calculations, we find the
following J-integrability condition.

Theorem 3. The proper almost complex structure J is integrable if and only if the following
PDEs hold
a1 — b1 —2c2 =0, a» — by +2c1 =0. (9)

From this theorem, we immediately see that i£ b andc = 0, thenJ is integrable (cf.
remark belowFact land[7, Proposition 4).

2.5. Indefinite Khler structure

As the main result of the present paper, we have thBl& condition as follows.

Theorem 4. The triple(g, J, £2) is Kahler if and only if the following PDEs hold
a1 = —b1 = ¢y, ap = —by = —cj. (20)

Moreover, if the triple(g, J, £2) is Kahler, then the functions a, b and c¢ are all harmonic
with respect to the first two argumerfts', x). That is,

aj1+az =0, b11+ b2 =0, c11+c22=0. (11)
Proof. The combination of PDEs i(6) and (9)gives the desired conditior{40). From
these equations, we hawg) = (a1)1 = (c2)1 = c12 = (c1)2 = —(a2)2 = —az2, and hence
ai1 + az2 = 0. Similarly, we can see thaf; + b22 = 0andci1 +c22=0. O

3. Construction of indefinite Kahler 4-maniflolds

Theorem 4provides a useful method of producing examples of indefiniél&r 4-
maniflolds, which we now explain.
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We begin with a harmonic functioi(x, y) of two variables £, y). Thatis,his a solution
to the following Laplace equation:
(3xx + 3yy)h(x, y) = 0. (12)
Many harmonic functions(x, y) of two variables are known, e.g., as follows:
3% 2Ly, =N+ +)D), 2 —3n7
3%y — y3, cosx sinh y, e cosy, €' (x cosy — y sin y),
log(x? + y?), etc (13)

We shall construct an indefinitedler 4-manifold, starting from a harmonic function, e.g.
h(x, y) = cosx sinh y. First puta = h(x1, x?) + ¥ (x3, x*), i.e., as follows:

a=a(xt, ¥, x3, x*) = cosx? sinhx? + ¥(x2, x%), (14)

wherey is an arbitrary smooth function ofg, x*). Then,ais also harmonic with respect
to (x1, x2), and we have

a; = —sin x* sinh x2, ay = cosx! coshx?. (15)
From(10), we have PDEs fob to satisfy as

by = —a1 =sinx! sinhx?>, by = —ap = — cosx! coshx?, (16)
and similarly PDEs foc to satisfy as

¢1 = —ay = —cosx! coshx?, c2 = a; = — sin x* sinh x2. (17)
These PDEs are easily solved, and we have solutions

b =b(xt, x%, x3, x* = — cosxt sinhx? + A(x3, x4, (18)

¢ = c(xt, x2, x3, x*) = sin x! coshx? + u(x3, x%), (29)

wherex(x3, x%), u(x3, x*) are arbitrary smooth functions afy, x*). Thus the indefinite
Kahler metric takes the form

00 1 0
~ [gi] = 00 0 1
=18 11 0 cosx® sinh a2 + ¥(x3, x4 sin x! cosha? + u(x3, x4)
0 1 sinx® coshx? + u(x3, x*) — cosx? sinhx2 + A(x3, x%)
(20)
Remarks

(i) We must consider the integrability conditions of the PDEs boaind ¢ in (10) (or
explicitly (16) and (17). Suppose thdi; = f andb, = g are the given PDEs fdy for
known functiond andg. It is well known thatf> = g1 is the integrability condition. In
our case, as iflL0), we see thaf = —a1 andg = —ay, and therefore the integrability



390 Y. Matsushita / Journal of Geometry and Physics 55 (2005) 385-398

condition forb is always satisfied agy = —a12 = g1. Similarly, the system foc is
also integrable. Thus, for any harmonic functianthere always exists solutiors
andc, whence our procedure for constructing indefinit@hlier structures on Walker
4-manifolds is justified.

(i) Petean’s nonflat indefinite &ler—Einstein metrif9] can be constructed in this way
as a very special case. Assume first that 0. Then, we have that= y(x3, x%), b =
A(x3, x%), andc = pu(x3, x4). If we further assume that = u(x3, x*) = 0, and that
Y(x3, x) = A(x3, x%), i.e.,a = b = Y (x3, x*), then the metric becomes

00 1 0
00 0 1
1093, x4 0
01 0 Y3 xY

g=I[gjl = (21)

which is precisely Petean’s example. Note that this is an example of the eafeand
a = b (cf. remark belowFact J).

4. Opposite almost complex structure’ and opposite Kahler form 2’
4.1. Opposite almost complex structure

Itis known that an oriented 4-manifold with a field of 2-planes, or equivalently endowed
with a neutral indefinite metric, admits a pair of almost complex structarel an opposite
almost complex structur#’, which satisfy the following properties (d#—6]):

(i) J2=J2%=—-1;
(i) g(JX,JY)=g(J'X,J'Y)=g(X,Y);
(iiy JJ'=JJ;
(iv) the preferred orientation afcoincides with that oM;
(v) the preferred orientation of is opposite to that of.

Remark. Let V = (R?%, <, >) be a four-dimensional vector space with a quadratic form
<, > of neutral signature. Suppose that a complex structuaeting onV which keep the
guadratic form<, > invariant. All such complex structures can be obtained from some fixed
complex structure, sak, by the action of0(2, 2), asl = AIpA™1, A € SOo(2, 2). The
isotropy subgroup ofO(2, 2) atly is the unitary grou@/(1, 1) if the preferred orientation

of | coincides with that ol. Similarly, we denote by/'(1, 1) the isotropy subgroup of
S0(2, 2) which keep some fixed opposite complex structigr@variant. Then, all orthog-
onal complex structures can be identified with the quotient spgce SO(2, 2)/U(1, 1).
Similarly, all orthogonal opposite complex structures can be identified with the quo-
tient space(l’} ~ SO(2,2)/U’(1, 1). At present, it is important to recognize a fact that
dimS0(2,2)/U(1,1)=dimS0(2,2)/U'(1,1) = 2.
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Since din{I’} = 2, the opposite almost complex structuteassociated with the proper
almost complex structurgcannot be determined uniquely.

Proposition 5. For a Walker 4-manifoldM, g, D), with the proper almost complex structure
J, the g-orthogonal opposite almost complex structlireakes the form

6 0
J'9 = —0201 — Elb32 + 6104, Ty = —ady + (B1c — 02)92 — 0103,

2
0 1 2
J 93 = —1c — 6 | adr + + 916 — —ab 20o¢c + @ 02
2 0 01
01
— (61c — 62)93 + — ada,
1 (62)? 01 01
J g = — ———b —— 0 —c—062 ) bdy — —bod 6204,
4 (91 7 + A 1+ 2c 2 2—5 3+ 0204

wherefs(# 0) andd, are two parameters.

It may be interesting and significant to analyze if such a gengrig integrable or not,
and if the opposite Khler form$2'(X, Y) = g(J'X, Y) is symplectic or not. In the present
paper, however, we shall focus our attention to one of explicit form#’ ofbtained by
fixing two parameters &% = 1 andd> = 0 (only for simplicity), as follows:

Jor=—3bdr+ s  JO2=%ad+cd— 33,
J'93 = acdy + (1 — ab + ¢?)do — iz + 2ada,
J'84 = —(1 — Jab)dy + 3bcdp — 3bd3. (22)
If we write asJ’9; = Zj’zl J/{aj, then from(22) we can read off the nonzero components
J'! as follows:
Ji==3,  Ji=1  Ji=%a,  J5=c, T3=-1
%ac, J’g =1-— %ab + 2, J/g = —c, Ja = %a,
Jy=—1+3%ab,  Ji=1%be,  J5=-1b. (23)

Our analysis od’ in the present note is concerned only withilefined just above. Therefore,
we must take care that the results obtained in what follows are not concerned with the generic
J.

4.2. Opposite Ehler form 2’

In terms of the metrigy and the opposite almost complex structufen (22), we can
define an opposite &hler form2'(X, Y) = g(J'X, Y), whose explicit form is given by

2 = dxt Adx® + cdxt A dx® + Sbdxt A dx®
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+(@2Q+ %ab)dx?’ Adxt — %adx2 A dxS, (24)

For the conditions fof2’(X, ¥) to be symplectic, we have the following theorem.

Theorem 6. £’ is symplectidds2’ = 0) if and only if the following PDEs hold
by =0, ai+ 2co =0, bay — 2a4 = 0, bay + aby — 2b3 + 4c4 = 0.
(25)
Proof. These PDEs can be obtained from the following differentiaRaf
d$2 = X((ab)2 — 2as)dx® A dx® A dx* + 3((ab)1 — 2b3 + dea)dx® A dx® A dx?

—%bzdxl Adx® A dx® — %(al + 2c‘2)dxl AdP Aded. O

4.3. J'-integrability

The opposite almost complex structuréis integrable if the analogue of the partial
derivativeg8)for J’{ in (23)vanish. From some calculation, we have explicitly the following
theorem.

Theorem 7. The proper opposite almost complex structiifés integrable if and only if
the following PDEs hold

a; =0, b +2c1 =0, bapy — 2a4 = 0,
abq1 — 2b3 — 4cc1 — 2bco + 4eq = 0. (26)

4.4. Opposite Ehler structure

The triple @, J/, £2") is called an opposite &hler structure if2’ is symplectic and if/’
is integrable.

Theorem 8. The triple(g, J', £2) is opposite Whler if and only if the following PDEs
hold:

a1=by=c1=c2=0, as = %baz, c4 = —zllabl + %b;g. (27)
Proof. The combination 0f25) and (26)gives the desired PDEs as the condition to be
opposite Kahler. O
5. Sixteen classes of Walker 4-manifolds with respect t@( J, £2) and (g, J', £')

We now define various subfamilies in the set of all Walker 4-manifoldé=
{M=(M,g,J, J', £, .Q/)}.
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W W
v \ v N\
AKX H AKX’ 3’
N v N v
X X’
(9,J,9) (g,J',2")
Plate 1.

K={M=(M,g, JJ, 82 2)ds2 =0}
Walker 4-manifolds with indefinite almostékler structure-& Theorem 2.
H={M=(M,g,J,J, 82,2 Jis integrablé:
Walker 4-manifolds with indefinite Hermitian structure-(Theorem 3.
K={M=(M,g, J J, 2 2)ds2 =0, Jis integrablé:
Walker 4-manifolds with indefinite hler structure{> Theorem 4.
AK ={M = (M, g, J,J', 2, 2)d2 = 0}:
Walker 4-manifolds with indefinite opposite almostalder structure
(— Theorem §.
H={M=WM,g, J J, 2, 2)J isintegrablg:
Walker 4-manifolds with indefinite opposite Hermitian structuse Theorem 7.
K'={M=(M,g,J, J, 2, 2)d2 =0, J is integrablg:
Walker 4-manifolds with indefinite oppositeéiiler structure{> Theorem §.

We must note that = AKX N H andK’ = AKX’ N H'. SeePlate 1 where arrows indicate
from coarse to fine.

From these two kinds of subfamilies, we can further classify the Walker 4-manifolds
into 16 classes as shownTable 1

Theorem 9. The conditions for a Walker 4-manifold M to be in one of the following five
subfamilies

KnAK, KNH, AKX N K, HNK, KnK

coincide with each other. In fact, such a condition is given explicitly as follows

ag=ar=as=b1=by=c1=c2=0, b3 = 2¢4. (28)
Table 1
w AK H K
AK' AK N AK! HNAK KnAK
H AKNH HNH KNH

K AKN K HNK KnK
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Table 2
w AK H K
AK' AKX N AK HNAK
H AKNH HNH
IC/

AKX ¥ H AKX

K(=AKNH)  AKNH  AKNAK  HNH  HNAK K (=HNAK')
!
KNAK =KNH =XKnK' =HNK =AKNK

Plate 2.

Proof. Assume firstthat a Walker 4-manifdidiis an indefinite Kahler 4-manifoldM € IC,
i.e., M satisfies the PDFs ifiL0). If M admits further an opposite symplectic form, i.e.,
M e AK’, thenM must satisfy the PDEs i(25). Then, we see that fa¥f € K N AKX/,
these two kinds of conditions become the desired PDEs &28n For the other four
subfamilies, such conditions are coincide with each other 828n O

These five subfamilies are indicated in the gray boxéeRaivie 2

This theorem implies that if an indefinitedkler 4-manifold ¢ € KC) admits further,
e.g., an integrable proper (M € H'), then the manifold ¥ € X NH') must be double
Kahler,i.e.M e KNK'.

FromTheorem 9it turns out that the Walker 4-manifolds are classified into essentially
12 subfamilies with respect th J/, £2, and$2’ (cf. Table 2andPlate 3.

6. Curvatures characterized byJ, J', 2 and £’

We have seen in the preceding sections the conditionsdadJ’ to be integrable, and
those fors2 ands2’ to be closed. We can expect that the conditions for a Walker 4-manifold
to be in some of the 16 subfamilies will restrict the curvature tensors to a certain extent.
From such a point of view, we have some results as follows. Note that the curvature tensor
Riju, the Ricci tensor;;, the scalar curvaturg, and the Einstein tens@¥;; are given in
AppendicesA-D.

Theorem 10. If a Walker 4-manifold M is either opposite almosatdér (M < AK') or
opposite Hermitia{M € H’), then M is scalar flat
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Proof. Suppose thaM is opposite almost Khler. Then from the first two equations
bp =0 andaj + 2c2 =0 in (25) (Theorem 6, we see thatS = a1 + 2c12 + boo =
(a1 + 2c2)1 = 0.

Next, suppose thaM is opposite Hermitian. Then from the first two equations
a1 =0 and bz + 2¢;1 = 0 in (26) (Theorem 7, we see thatS = a11 + 2c¢12 + b2 =
(2c1+b2)2=0. O

Theorem 11. If a Walker 4-manifold M is in the subfamilf¢ N AKX’ = KNH' = AKX N
K'=HNK =KnK, thenMis flat.

Proof. If Mis in the five subfamilies consideredTmeorem 9then the functions, b and
c satisfy the same conditions as(@8). Under such conditions, it is easy to see that the
components; i of curvature tensor ippendix Aall vanish. O

7. Examples of indefinite Ricci flat almost-Kahler non-Kahler 4-manifolds

We show by construction an example, due to H@ieof noncompact indefinite Ricci
flat almost-Kahler non-Kahler 4-manifolds. This is an indefinite version of the example
given by Nurowski and Przanows}8]. Consider the metric

001 0
000 1
711 04 0" (29)
010 —a

That is, the metric is defined by puttidg= —a, ¢ = 0 in the generic canonical fori).
From(5), we have that2 = dx! A dx* — dx? A dx3, and hence is symplectic. In this case,
we see fromAppendix Dthat the Einstein conditiond;; = 0) consists of the following
PDEs:

aj2 =0, aayy — 2az4 — (az)® = 0, aais — a3+ araz = 0,
aay1 — 2a13 + (a1)* = 0. (30)

If ais independent of? andx?, and ifa containsx® only linearly, then first three PDEs

trivially hold, and the last one reduces t@3 — (a1)? = 0. We shall see that = —%l is
a solution to the PDE, and therefore the metric

[00 1 0

00 O 1
1

8= 10_ﬁ 0 (31)

3

le

01 0 —

L x3_
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is Einstein on the coordinate patsh > 0 (or x3 < 0). In fact, this is a Ricci flat metric
(for the Ricci tensor;;, see AppendiB).

For such an Einstein metrig, the proper almost complex structutedefined in(3)
becomes

Xt X1
Joy = 0o, Joo = —01, Joz = ——332 + 0a, Jog = —f381 —0d3. (32)
X X

The condition(9) for J to be integrable iMheorem Jecomes
4
al—b1—202=2a1=——37$0, az — by +2c1 = 2a, = 0. (33)
X
Thus,J cannot be integrable.

The proper opposite almost complex structiitén (22) has the form

7 xl / xl
J81=—;32+84, 182=—;81—83,

xl 2 xl xl 2 Xl
Joz=<1+ <x3) 02 — ;84, Jos=—-{1+ <x3) 01 — ;83. (34)
Condition(25) for £2' to be symplectic imTheorem @ecomes
2
by, =0, bay — 2a4 = 0, a1+202=a1=——3750,
X
8x1

—Zaal — 2b3 + 4C4 = —W ;é 0. (35)

Therefore £2’ is not symplectic.
The J’ integrability condition(26) in Theorem 7ecomes

2
al:_x737éo’ Cl+%b2=0, ba2_2a4=O9

4 1
aby — 2b3 — 4cey — 2bez + A = —aay = ——5 # 0. (36)
(x°)
ThusJ’ is not integrable.
Thus, the Walker 4-manifold of this type is notAhbut in AKX (indefinite almost Khler
4-manifolds) in the 16 subfamilies.
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Appendix A. Curvature tensors R;ji; (nonzero components)

1 1 1 1
Ri1313= —3a11, R1314= —35c11, Ri1323= —3a12, R1324= —35c12,
1 1 1 1 1 1
Ri33a= 5a14 — 5c13 — za201 + zcic2, Ria14= —35b11, Ri423= —35c12,
1 1 1 1.2 4 1 1 1
Riap4= —3b12, Riaza= 5c14 — 5b13 — 3(c1)” + za1b1 — zb1c2 + zb2ca,
R —_1 R —_1
2323 = —30a22, 2324 = —5C22,
1 1 1 1 1 10.y2 1
R2334= 5a24 — 5¢23 — zaic2 + zazxc1 — zaz2bz + 7(c2)%, Ro424= —5b22,

1 1 1 1
Roaza= 5c24 — 5b23 — zc102 + Fa2b1,

1 1 1 2,1 1 1 1
R3434 = ¢34 — 5044 — 5b33 — 7a(c1)” + zaarby + zcarby — 5ccico — 5a4c1
1 1 1 1 1 2 1
+ 5a1c4 — zaibz + zcazby + zbazby — 7b(c2)” — 5b3c2

+ %a2b4 + %a3b1 + %b203 — lea4b2.
Appendix B. Ricci tensorr;; (nonzero components)
r1i3 = 3a11+ 3c12, ria= 3bi2+ 3e11,
ra3 = 3a12+ 3c22, raa = b2+ 3c12.
ra3 = 3aai1+ caiz + 3bazy — aza+ c23 — 3azc1 + 3aica + Sazhz — 3(c2)?,
ras = 3ac11+ ccio+ 3a14 — 3013 — 3a2b1 + 3c1¢2 + 3bc22 — 324+ 3b23,

ra4 = %abll + cb12 + c14 — b13 — %(01)2 + %albl — %blcz + %bzcl + %bbzz.

Appendix C. Scalar curvature S

4
S = Z gVrij = a11+ 2c12 + boa.
i,j=1

Appendix D. Einstein tensorG;; = r;j — %gij (nonzero components)

1 1 1 1
Gi3 = zai1 — 3b22, Gi14= 5c11+ 5b12,



398 Y. Matsushita / Journal of Geometry and Physics 55 (2005) 385-398

1 1 1 1
G23 = 5a12+ 5c22, G24 = 7b22 — 711,
Gas = 1 lbars — 1. - 1

33 = zaail+ caiz + 50422 — a4+ €23 — 5a2¢1 + 5412

1 1 1 1
+ 3azb2 — 3(c2)? — 3ac12 — 3abaa,

1 1 1 1 1 1 1
G34 = 5ac11+ 5cc12 + 5a14 — 5¢13 — 5a2b1 + 5c¢1c2 + 5bc22

1 1 1 1
— 524+ 5b23 — zca11 — zcb22,

Gaa = 3abi1+ chip+ c1a — b1z — 3(c1)? + 3a1b1 — 3bicz + 3bac

+ 2bboy — $bar1 — 3be1a.
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